Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542306

RESUMEN

Common variants in the iron regulatory protein HFE contribute to systematically increased iron levels, yet the effects in the brain are not fully characterized. It is commonly believed that iron dysregulation is a key contributor to neurodegenerative disease due to iron's ability to catalyze reactive oxygen species production. However, whether HFE variants exacerbate or protect against neurodegeneration has been heavily debated. Some claim that mutated HFE exacerbates oxidative stress and neuroinflammation, thus predisposing carriers to neurodegeneration-linked pathologies. However, H63D HFE has also been shown to slow the progression of multiple neurodegenerative diseases and to protect against environmental toxins that cause neurodegeneration. These conflicting results showcase the need to further understand the contribution of HFE variants to neurodegenerative disease heterogeneity. Data from mouse models consistently demonstrate robust neuroprotection against toxins known to increase the risk of neurodegenerative disease. This may represent an adaptive, or hormetic, response to increased iron, which leaves cells better protected against future stressors. This review describes the current research regarding the contribution of HFE variants to neurodegenerative disease prognosis in the context of a hormetic model. To our knowledge, this is the first time that a hormetic model for neurodegenerative disease has been presented.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedades Neurodegenerativas/genética , Proteína de la Hemocromatosis/genética , Antígenos de Histocompatibilidad Clase I/genética , Hormesis , Mutación , Hierro/metabolismo
2.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253961

RESUMEN

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Sobrecarga de Hierro , Adulto , Niño , Femenino , Humanos , Embarazo , Hierro/metabolismo , Anemia Ferropénica/terapia , Sobrecarga de Hierro/tratamiento farmacológico
3.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239626

RESUMEN

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

4.
Sci Rep ; 14(1): 2389, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287054

RESUMEN

The association between anemia and outcomes in glioblastoma patients is unclear. We analyzed data from 1346 histologically confirmed adult glioblastoma patients in the TriNetX Research Network. Median hemoglobin and hematocrit levels were quantified for 6 months following diagnosis and used to classify patients as anemic or non-anemic. Associations of anemia and iron supplementation of anemic patients with median overall survival (median-OS) were then studied. Among 1346 glioblastoma patients, 35.9% of male and 40.5% of female patients were classified as anemic using hemoglobin-based WHO guidelines. Among males, anemia was associated with reduced median-OS compared to matched non-anemic males using hemoglobin (HR 1.24; 95% CI 1.00-1.53) or hematocrit-based cutoffs (HR 1.28; 95% CI 1.03-1.59). Among females, anemia was not associated with median-OS using hemoglobin (HR 1.00; 95% CI 0.78-1.27) or hematocrit-based cutoffs (HR: 1.10; 95% CI 0.85-1.41). Iron supplementation of anemic females trended toward increased median-OS (HR 0.61; 95% CI 0.32-1.19) although failing to reach statistical significance whereas no significant association was found in anemic males (HR 0.85; 95% CI 0.41-1.75). Functional transferrin-binding assays confirmed sexually dimorphic binding in resected patient samples indicating underlying differences in iron biology. Anemia among glioblastoma patients exhibits a sex-specific association with survival.


Asunto(s)
Anemia , Glioblastoma , Adulto , Humanos , Masculino , Femenino , Hierro , Glioblastoma/complicaciones , Anemia/complicaciones , Hemoglobinas/metabolismo , Suplementos Dietéticos
5.
FASEB J ; 38(1): e23331, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031991

RESUMEN

Adequate and timely delivery of iron is essential for brain development. The uptake of transferrin-bound (Tf) iron into the brain peaks at the time of myelination, whereas the recently discovered H-ferritin (FTH1) transport of iron into the brain continues to increase beyond the peak in myelination. Here, we interrogate the impact of dietary iron deficiency (ID) on the uptake of FTH1- and Tf-bound iron. In the present study, we used C57BL/6J male and female mice at a developing (post-natal day (PND) 15) and adult age (PND 85). In developing mice, ID results in increased iron delivery from both FTH1 and Tf for both males and females. The amount of iron uptake from FTH1 was higher than the Tf and this difference between the iron delivery was much greater in females. In contrast, in the adult model, ID was associated with increased brain iron uptake by both FTH1 and Tf but only in the males. There was no increased uptake from either protein in the females. Moreover, transferrin receptor expression on the microvasculature as well as whole brain iron, and H and L ferritin levels revealed the male brains became iron deficient but not the female brains. Last, under normal dietary conditions, 55 Fe uptake was higher in the developing group from both delivery proteins than in the adult group. These results indicate that there are differences in iron acquisition between the developing and adult brain for FTH1 and Tf during nutritional ID and demonstrate a level of regulation of brain iron uptake that is age and sex-dependent.


Asunto(s)
Deficiencias de Hierro , Hierro , Ratones , Masculino , Animales , Femenino , Hierro/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Transferrina , Hierro de la Dieta/metabolismo
6.
FASEB J ; 37(12): e23307, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983646

RESUMEN

Glioblastoma is one of the deadliest malignancies facing modern oncology today. The ability of glioblastoma cells to diffusely spread into neighboring healthy brain makes complete surgical resection nearly impossible and contributes to the recurrent disease faced by most patients. Although research into the impact of iron on glioblastoma has addressed proliferation, there has been little investigation into how cellular iron impacts the ability of glioblastoma cells to migrate-a key question, especially in the context of the diffuse spread observed in these tumors. Herein, we show that increasing cellular iron content results in decreased migratory capacity of human glioblastoma cells. The decrease in migratory capacity was accompanied by a decrease in cellular polarization in the direction of movement. Expression of CDC42, a Rho GTPase that is essential for both cellular migration and establishment of polarity in the direction of cell movement, was reduced upon iron treatment. We then analyzed a single-cell RNA-seq dataset of human glioblastoma samples and found that cells at the tumor periphery had a gene signature that is consistent with having lower levels of cellular iron. Altogether, our results suggest that cellular iron content is impacting glioblastoma cell migratory capacity and that cells with higher iron levels exhibit reduced motility.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Movimiento Celular/genética , Encéfalo/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Proliferación Celular
7.
J Neurooncol ; 164(3): 569-586, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37812288

RESUMEN

PURPOSE: Iron plays a crucial role in various biological mechanisms and has been found to promote tumor growth. Recent research has shown that the H-ferritin (FTH1) protein, traditionally recognized as an essential iron storage protein, can transport iron to GBM cancer stem cells, reducing their invasion activity. Moreover, the binding of extracellular FTH1 to human GBM tissues, and brain iron delivery in general, has been found to have a sex bias. These observations raise questions, addressed in this study, about whether H-ferritin levels extrinsic to the tumor can affect tumor cell pathways and if this impact is sex-specific. METHODS: To interrogate the role of systemic H-ferritin in GBM we introduce a mouse model in which H-ferritin levels are genetically manipulated. Mice that were genetically manipulated to be heterozygous for H-ferritin (Fth1+/-) gene expression were orthotopically implanted with a mouse GBM cell line (GL261). Littermate Fth1 +/+ mice were used as controls. The animals were evaluated for survival and the tumors were subjected to RNA sequencing protocols. We analyzed the resulting data utilizing the murine Microenvironment Cell Population (mMCP) method for in silico immune deconvolution. mMCP analysis estimates the abundance of tissue infiltrating immune and stromal populations based on cell-specific gene expression signatures. RESULTS: There was a clear sex bias in survival. Female Fth1+/- mice had significantly poorer survival than control females (Fth1+/+). The Fth1 genetic status did not affect survival in males. The mMCP analysis revealed a significant reduction in T cells and CD8 + T cell infiltration in the tumors of females with Fth1+/- background as compared to the Fth1+/+. Mast and fibroblast cell infiltration was increased in females and males with Fth1+/- background, respectively, compared to Fth1+/+ mice. CONCLUSION: Genetic manipulation of Fth1 which leads to reduced systemic levels of FTH1 protein had a sexually dimorphic impact on survival. Fth1 heterozygosity significantly worsened survival in females but did not affect survival in male GBMs. Furthermore, the genetic manipulation of Fth1 significantly affected tumor infiltration of T-cells, CD8 + T cells, fibroblasts, and mast cells in a sexually dimorphic manner. These results demonstrate a role for FTH1 and presumably iron status in establishing the tumor cellular landscape that ultimately impacts survival and further reveals a sex bias that may inform the population studies showing a sex effect on the prevalence of brain tumors.


Asunto(s)
Apoferritinas , Glioblastoma , Humanos , Masculino , Femenino , Animales , Ratones , Apoferritinas/genética , Apoferritinas/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Glioblastoma/genética , Microambiente Tumoral , Hierro/metabolismo
8.
Stroke ; 54(11): 2886-2894, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37750297

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is characterized by bleeding into the brain parenchyma. During an ICH, iron released from the breakdown of hemoglobin creates a cytotoxic environment in the brain through increased oxidative stress. Interestingly, the loss of iron homeostasis is associated with the pathological process of other neurological diseases. However, we have previously shown that the H63D mutation in the homeostatic iron regulatory (HFE) gene, prevalent in 28% of the White population in the United States, acts as a disease modifier by limiting oxidative stress. The following study aims to examine the effects of the murine homolog, H67D HFE, on ICH. METHODS: An autologous blood infusion model was utilized to create an ICH in the right striatum of H67D and wild-type mice. The motor recovery of each animal was assessed by rotarod. Neurodegeneration was measured using fluorojade-B and mitochondrial damage was assessed by immunofluorescent numbers of CytC+ (cytochrome C) neurons and CytC+ astrocytes. Finally, the molecular antioxidant response to ICH was quantified by measuring Nrf2 (nuclear factor-erythroid 2 related factor), GPX4 (glutathione peroxidase 4), and FTH1 (H-ferritin) levels in the ICH-affected and nonaffected hemispheres via immunoblotting. RESULTS: At 3 days post-ICH, H67D mice demonstrated enhanced performance on rotarod compared with wild-type animals despite no differences in lesion size. Additionally, H67D mice displayed higher levels of Nrf2, GPX4, and FTH1 in the ICH-affected hemisphere; however, these levels were not different in the contralateral, non-ICH-affected hemisphere. Furthermore, H67D mice showed decreased degenerated neurons, CytC+ Neurons, and CytC+ astrocytes in the perihematomal area. CONCLUSIONS: Our data suggest that the H67D mutation induces a robust antioxidant response 3 days following ICH through Nrf2, GPX4, and FTH1 activation. This activation could explain the decrease in degenerated neurons, CytC+ neurons, and CytC+ astrocytes in the perihematomal region, leading to the improved motor recovery. Based on this study, further investigation into the mechanisms of this neuroprotective response and the effects of the H63D HFE mutation in a population of patients with ICH is warranted.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Hemorragia Cerebral/genética , Proteína de la Hemocromatosis/genética , Hierro/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
9.
J Neurochem ; 167(2): 248-261, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667496

RESUMEN

Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.

10.
Neuro Oncol ; 25(12): 2136-2149, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37539622

RESUMEN

Glioblastoma (GBM) is among the deadliest malignancies facing modern oncology. While our understanding of certain aspects of GBM biology has significantly increased over the last decade, other aspects, such as the role of bioactive metals in GBM progression, remain understudied. Iron is the most abundant transition metal found within the earth's crust and plays an intricate role in human physiology owing to its ability to participate in oxidation-reduction reactions. The importance of iron homeostasis in human physiology is apparent when examining the clinical consequences of iron deficiency or iron overload. Despite this, the role of iron in GBM progression has not been well described. Here, we review and synthesize the existing literature examining iron's role in GBM progression and patient outcomes, as well as provide a survey of iron's effects on the major cell types found within the GBM microenvironment at the molecular and cellular level. Iron represents an accessible target given the availability of already approved iron supplements and chelators. Improving our understanding of iron's role in GBM biology may pave the way for iron-modulating approaches to improve patient outcomes.


Asunto(s)
Glioblastoma , Hierro , Humanos , Hierro/metabolismo , Glioblastoma/metabolismo , Homeostasis/fisiología , Microambiente Tumoral
11.
bioRxiv ; 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37292926

RESUMEN

Excessive brain iron accumulation is observed in early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway protein levels. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease to detrimental ends. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation. Significance Statement: Excessive brain iron accumulation is hallmark pathology of Alzheimer's disease that occurs early in the disease staging and before widespread proteinopathy deposition. This overabundance of brain iron has been implicated to contribute to disease progression, thus understandingthe mechanism of early iron accumulation has significant therapeutic potential to slow to halt disease progression. Here, we show that in response to low levels of amyloid-ß exposure, astrocytes increase their mitochondrial activity and iron uptake, resulting in iron deficient conditions. Elevated levels of apo (iron free)-transferrin stimulate iron release from endothelial cells. These data are the first to propose a mechanism for the initiation of iron accumulation and the misappropriation of iron transport signaling leading to dysfunctional brain iron homeostasis and resultant disease pathology.

12.
J Biomed Sci ; 30(1): 36, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277838

RESUMEN

BACKGROUND: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron-deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanisms of apo- and holo-Tf influence on iron release was largely unknown. METHODS: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism by which apo- and holo-Tf influence cellular iron release. Given the established role of hepcidin in regulating cellular iron release, we further explored the relationship of hepcidin to transferrin in this model. RESULTS: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly interacts with ferroportin, whereas apo-Tf directly interacts with hephaestin. Only pathophysiological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, but similar hepcidin levels are unable to interfere with the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to more rapidly internalize ferroportin compared to holo-Tf. CONCLUSIONS: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin cooperate to suppress iron release. These results expand on our previous reports on mechanisms mediating regulation of brain iron uptake to provide a more thorough understanding of the regulatory mechanisms mediating cellular iron release in general.


Asunto(s)
Hepcidinas , Transferrina , Humanos , Transferrina/metabolismo , Hepcidinas/metabolismo , Células Endoteliales/metabolismo , Células HEK293
13.
J Cancer Res Clin Oncol ; 149(12): 9691-9703, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37237166

RESUMEN

PURPOSE: Iron acquisition is key to maintaining cell survival and function. Cancer cells in general are considered to have an insatiable iron need. Iron delivery via the transferrin/transferrin receptor pathway has been the canonical iron uptake mechanism. Recently, however, our laboratory and others have explored the ability of ferritin, particularly the H-subunit, to deliver iron to a variety of cell types. Here, we investigate whether Glioblastoma (GBM) initiating cells (GICs), a small population of stem-like cells, are known for their iron addiction and invasive nature acquire exogenous ferritin, as a source of iron. We further assess the functional impact of ferritin uptake on the invasion capacity of the GICs. METHODS: To establish that H-ferritin can bind to human GBM, tissue-binding assays were performed on samples collected at the time of surgery. To interrogate the functional consequences of H-ferritin uptake, we utilized two patient-derived GIC lines. We further describe H-ferritin's impact on GIC invasion capacity using a 3D invasion assay. RESULTS: H-ferritin bound to human GBM tissue at the amount of binding was influenced by sex. GIC lines showed uptake of H-ferritin protein via transferrin receptor. FTH1 uptake correlated with a significant decrease in the invasion capacity of the cells. H-ferritin uptake was associated with a significant decrease in the invasion-related protein Rap1A. CONCLUSION: These findings indicate that extracellular H-ferritin participates in iron acquisition to GBMs and patient-derived GICs. The functional significance of the increased iron delivery by H-ferritin is a decreased invasion capacity of GICs potentially via reduction of Rap1A protein levels.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Apoferritinas , Hierro/metabolismo , Ferritinas/fisiología , Receptores de Transferrina , Células Madre/metabolismo
14.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188917, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209958

RESUMEN

Since its discovery more than 85 years ago, ferritin has principally been known as an iron storage protein. However, new roles, beyond iron storage, are being uncovered. Novel processes involving ferritin such as ferritinophagy and ferroptosis and as a cellular iron delivery protein not only expand our thinking on the range of contributions of this protein but present an opportunity to target these pathways in cancers. The key question we focus on within this review is whether ferritin modulation represents a useful approach for treating cancers. We discussed novel functions and processes of this protein in cancers. We are not limiting this review to cell intrinsic modulation of ferritin in cancers, but also focus on its utility in the trojan horse approach in cancer therapeutics. The novel functions of ferritin as discussed herein realize the multiple roles of ferritin in cell biology that can be probed for therapeutic opportunities and further research.


Asunto(s)
Ferritinas , Neoplasias , Humanos , Ferritinas/metabolismo , Hierro/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
15.
J Neurochem ; 165(5): 625-642, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37000124

RESUMEN

Brain iron homeostasis is crucial for neurological health, with pathological fluctuations in brain iron levels associated with a variety of neurological disorders. Low levels are connected to cognitive impairment and restless legs syndrome, while high levels are connected to Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Given the detrimental effects unrestricted iron can have, regulated entry into the brain via transferrin and H-ferritin is critical. Endothelial cells of the blood-brain barrier are the site of iron transport regulation. The movement of iron through endothelial cells into the brain can be divided into three distinct processes: uptake, transcytosis, and release. Each process possesses external and internal influences on the regulation at each stage. This review discusses the mechanisms of iron uptake, transcytosis, and release at the blood-brain barrier, as well as the elements that contribute to regulation. Additionally, we explore the dysregulation of brain iron in Alzheimer's disease, Parkinson's disease, and restless legs syndrome.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Síndrome de las Piernas Inquietas , Humanos , Células Endoteliales , Encéfalo , Barrera Hematoencefálica , Hierro , Homeostasis/fisiología
16.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36629252

RESUMEN

Iron deficiency anemia is a significant problem in piglets, as they are born with insufficient iron stores for supporting their rapid body growth. Further, sows' milk contains inadequate iron levels for meeting the demands of piglet rapid growth in the pre-wean stage. The forms of iron present in the milk are essential to understanding bioavailability and potential routes for supplementing iron to mitigate iron deficiency anemia in piglets. Recently, our studies showed that H-ferritin (FTH1) is involved in iron transport to different tissues and can be used as an oral iron supplement to correct iron deficiency in rats and monkeys. In this study, we investigate the FTH1 levels in colostrum and milk in Yorkshires-crossbred sows (n = 27) and collected samples at the 1st, 15th, and 28th days of lactation to measure FTH1. Colostrum and milk were found to have FTH1, but there is no significant difference between the different days of lactation. FTH1 has been observed to be enriched in extracellular vesicles (EVs) of other species, and therefore examined the EVs in the samples. Colostrum-derived EVs were enriched with L-ferritin compared to FTH1, while in milk-derived EVs, only FTH1 was detected (P = 0.04). In milk-derived EVs, FTH1 was significantly higher (P = 0.021; P = 006) than FTH1 in colostrum-derived EVs. Furthermore, FTH1 levels of milk-derived EVs were significantly higher (P = 0.0002; P = 0004) than whole milk and colostrum FTH1. These results indicate that FTH1 is enriched in the milk-derived EVs and suggest that EVs play a predominant role in the FTH1 delivery mechanism for the piglet. The extent to which FTH1 in EVs accounts for the overall iron delivery mechanism in piglets is yet to be determined.


Colostrum and milk are the primary sources of nutrition for lactating mammals. Iron is an essential nutrient for nursing mammals. Piglets are routinely iron deficient and do not obtain adequate iron from sows' milk further contributing to anemia observed in young pigs. Additional information about the proteins that carry iron from the sow's breast milk to understand the bioavailability of iron and potential routes for reducing the incidence of anemia in offspring are clearly needed. We have discovered that H-ferritin (FTH1) is a potent iron transport protein and is not limited to iron storage as previously thought. Therefore, our objective was to determine whether the FTH1 is present in the sow's colostrum and milk. Furthermore, there are extracellular vesicles released from cells that are known to transport FTH1 and are reportedly present in sows' milk. Our study showed that FTH1 was present in the colostrum and milk and enriched in the milk-derived EVs. This study reveals a new protein and mechanism for iron delivery during lactation in sows that may be targeted to decrease iron deficiency in piglets.


Asunto(s)
Anemia Ferropénica , Enfermedades de los Porcinos , Embarazo , Animales , Porcinos , Femenino , Ratas , Leche , Calostro , Apoferritinas , Hierro , Anemia Ferropénica/veterinaria , Suplementos Dietéticos , Lactancia , Alimentación Animal/análisis
17.
J Biol Chem ; 299(2): 102868, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603765

RESUMEN

Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.


Asunto(s)
Barrera Hematoencefálica , Exosomas , Hierro , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Transporte Biológico
18.
Res Sq ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711476

RESUMEN

Background : Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods : Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results : We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions : These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.

19.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712094

RESUMEN

Background: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanism of apo- and holo-Tf's influence on iron release was largely unknown. Methods: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism of apo- and holo-Tf's influence over iron release. We placed our findings in physiological context by further deciphering how hepcidin played a role in this mechanism as well. Results: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly binds to ferroportin, whereas apo-Tf directly binds to hephaestin. Only pathological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, and no amount of hepcidin disrupts the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to rapidly internalize ferroportin compared to holo-Tf. Conclusions: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin corporate to suppress iron release. We have established a more thorough understanding of the mechanisms behind iron release regulation with great clinical impact for a variety of neurological conditions in which iron release is dysregulated.

20.
Fluids Barriers CNS ; 19(1): 49, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689283

RESUMEN

BACKGROUND: The brain requires iron for a number of processes, including energy production. Inadequate or excessive amounts of iron can be detrimental and lead to a number of neurological disorders. As such, regulation of brain iron uptake is required for proper functioning. Understanding both the movement of iron into the brain and how this process is regulated is crucial to both address dysfunctions with brain iron uptake in disease and successfully use the transferrin receptor uptake system for drug delivery. METHODS: Using in vivo steady state infusions of apo- and holo-transferrin into the lateral ventricle, we demonstrate the regulatory effects of brain apo- and holo-transferrin ratios on the delivery of radioactive 55Fe bound to transferrin or H-ferritin in male and female mice. In discovering sex differences in the response to apo- and holo-transferrin infusions, ovariectomies were performed on female mice to interrogate the influence of circulating estrogen on regulation of iron uptake. RESULTS: Our model reveals that apo- and holo-transferrin significantly regulate iron uptake into the microvasculature and subsequent release into the brain parenchyma and their ability to regulate iron uptake is significantly influenced by both sex and type of iron delivery protein. Furthermore, we show that cells of the microvasculature act as reservoirs of iron and release the iron in response to cues from the interstitial fluid of the brain. CONCLUSIONS: These findings extend our previous work to demonstrate that the regulation of brain iron uptake is influenced by both the mode in which iron is delivered and sex. These findings further emphasize the role of the microvasculature in regulating brain iron uptake and the importance of cues regarding iron status in the extracellular fluid.


Asunto(s)
Hierro , Transferrina , Animales , Apoferritinas , Transporte Biológico , Encéfalo/metabolismo , Femenino , Hierro/metabolismo , Masculino , Ratones , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...